How did ozone pollution evolve during the COVID-19 lockdown of spring 2020? 

In the boreal spring of 2020, worldwide measures for curbing the spread of the COVID-19 virus have led to unprecedented and abrupt lockdowns in transportation and industry. They have led to sharp decrease of emissions of anthropogenic pollutants that induced significant changes in the composition of the atmosphere from city to hemispheric scale.

Using an unprecedented synergy of satellite observations, in situ measurements and chemistry-transport models, Cuesta et al. (2022) have quantified the changes in ozone pollution in Europe associated with this first lockdown. The satellite observations used in the study are obtained from the IASI+GOME2 multispectral approach, in terms of the differences between 2020 and before the pandemic. Satellite data are adjusted to quantify only the effect of lockdown using simulations of the CHIMERE chemistry-transport model. By confirming the in situ measurements at the surface and increasing the spatial coverage, they highlighted a large reduction in background ozone pollution, associated with the numerous lockdowns in the northern hemisphere. Over the continent, a reduction in ozone pollution is noticed in less urbanized and rural regions, typically characterized by a photochemical regime linked to the abundance of nitrogen oxides. However, an increase in ozone pollution is clearly measured in more urbanized regions, especially in central Europe. This is the accumulation of ozone in areas where the sink of this pollutant has decreased by the reduction of anthropogenic emissions of nitric oxide. These observational estimates of the impact of lockdowns also show the difficulty of models in estimating its amplitude and vertical extent.

Ozone concentration variations in the lower troposphere (between the surface and 3 km altitude) in Europe during the period 1-15 April 2020.

More news

Ethylene industrial emitters seen from space

Over the past decade, significant progress has been made in improving the monitoring of the Earth’s atmosphere and our understanding of the impact that human activities have on air pollution. IASI/Metop is one of these satellite instruments capable of mapping the chemical composition of the atmosphere globally and in near-real time. In a recent study, […]

Homogeneous temperature data record derived from 13 years of IASI data using an artificial neural network

Bouillon et al. (2022) recently designed a neural network to retrieve atmospheric temperatures from the IASI radiance data. This new temperature data record is validated against other datasets and a good agreement is shown. Trends were computed from this new temperature dataset over the 2008–2020 period. A general warming of the troposphere, more important at […]

Humidity levels to determine future liveability in the Arabian Peninsula

Human survivability in hot regions does not depend only on temperature, but also on humidity levels in ambient air. In fact, the body’s ability to shed heat is diminished when the air around it is saturated with humidity. The wet bulb temperature (also called heat stress) is the temperature of the air when it is […]

Search